Managing FX Exposure

Transaction Exposure

© RS 2024 (for private use, not to be posted/shared online)

Managing TE

• A Comparison of External Hedging Tools

Transaction exposure: Risk from the settlement of transactions denominated in foreign currency.

Example: Imports, exports, acquisition of foreign assets.

- Organizational Tools to manage TE (Internal Methods):
 - Contracts that limit TE (Risk shifting (pricing in DC), Risk sharing)
 - Leading-lagging payments between subsidiaries
 - Inflows/Outflows Matching
- Financial Tools to mange TE (External Methods):
 - Futures/forwards (FH)
 - Options (OH)
 - Money market (MMH)

External Methods (Market-based Tools) Review from Chapter 5 (FX Hedging Tools)

• Hedging Market-based Tools:

- ◆ Futures/Forward: Completely eliminates uncertainty
 - UP: *short* in the foreign currency.
 - HP: long in currency futures.
 - UP: *long* in the foreign currency. HP: *short* in currency futures.
- ♦ **Options**: Reduces uncertainty. How much? It depends on **X**.
 - UP: *short* in the foreign currency.
 - HP: *long* in currency calls.
 - UP: *long* in the foreign currency.
 - HP: long in currency puts.

• <u>New tool: MMH</u>

Money market hedge: Based on a replication of IRPT arbitrage.

Let's take the case of *receivables* denominated in FC:

1) Borrow FC

2) Convert to DC

3) Deposit DC in domestic bank

4) Transfer FC receivable to cover loan (+ interest) from (1).

Under IRPT, step 4) involves buying FC forward, to repay loan in (1)

 \Rightarrow This step is not needed, instead, we just transfer the FC receivable.

Q: Why MMH instead of FH?

- Under perfect market conditions \Rightarrow MMH = FH
- Under less than perfect conditions \Rightarrow MMH \neq FH

Comparison of Hedging Strategies				
Example: Iris Oil Inc. has a large FC exposure in the form of a CAD cash				
flow from its Canadia	n opera	tions. Iris decides to transfer CAD 300M to		
its USD account in 90	days.			
<u>FX risk to Iris</u> : CAD r	nay dep	reciate against the USD.		
<u>Data</u> :				
$S_t = 0.8451 \text{ USD/CA}$	D			
$F_{t,90-day} = 0.8493 \text{ USE}$	D/CAD			
i _{USD} = 3.92%				
$i_{CAD} = 2.03\%$				
<u>X</u>	<u>Calls</u>	Puts		
.82 USD/CAD		0.21		
.84 USD/CAD	1.58	0.68		
.88 USD/CAD	0.23			

Example (continuation): Date Spot market Forward market Money market $S_t = .8451 \text{ USD/CAD}$ $F_{t,90\text{-day}} = .8493 \text{ USD/CAD}$ $i_{\text{USD}} = 3.92\%$ t i_{CAD} = **2.03%** t + 90 Receive CAD 300M and transfer into USD. NTE = CAD 300M * .8451 USD/CAD = USD 253.53M Hedging Strategies: 1. Do Nothing Do not hedge and exchange the **CAD 300M** at S_{t+90} . 2. Forward Market At *t*, sell the **CAD 300M** forward and at time t + 90 guarantee: CAD 300M * .8493 USD/CAD = USD 254,790,000

Example (continuation): 3. Money Market At t, Iris Oil takes the following three steps, simultaneously: 1) Borrow from Canadian bank at 2.03% for 90 days : **CAD 300M** / [1 + .0203 * (90/360)] =**CAD 298,485,188**. 2) Convert to USD at S_t : CAD 298,485,188 * 0.8451 USD/CAD = USD 252,249,832 3) Deposit in US bank at **3.92%** for 90 days to guarantee at time t+90: USD 252,249,832 * [1 + .0392 * (90/360)] = USD 254,721,880.Note: Both the FH and the MMH guarantee certainty at time t+90 FH delivers to Iris Oil: USD 254,790,000 MMH delivers to Iris Oil: USD 254,721,880 \Rightarrow Iris Oil selects the FH. (MMH is a *dominated* strategy.)

Example (continuation):						
4. Option Market						
At <i>t</i> , buy a put .	At <i>t</i> , buy a put . Available 90-day options:					
X		<u>Calls</u>	<u>Puts</u>			
.82 USD/CAD			0.21			
.84 USD/CAD		1.58	0.68			
.88 USD/CAD		0.23				
Buy the .84 US	SD/CAD pu	$t \Rightarrow$ Total premium cost	of USD 2.04M .			
Position	Initial CF	Cash flows	s at t+90			
		$S_{t+90} < .84 \text{ USD/CAD}$	S _{t+90} >.84 USD/CAD			
Option (HP)	USD 2.04M	$(.84 - S_{t+90}) * CAD 300M$	0			
Underlying (UP)	0	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M			
Total CF	USD 2.04M	USD 252M	S _{t+90} CAD 300M			
Net CF at $t + 90$:						
USD 24	9,960,000	for S_{t+90}	< .84 USD/CAD			
or $S_{t+90} * C$	or $S_{t+90} * CAD 300M - USD 2.04M$ for $S_{t+90} > .84 USD/CAD$					

Example (continuation): Companies do not like paying premiums. <i>5. Collar</i>							
At time t	At time t, buy a put and sell a call.						
Buy .84 p	out at USD 0	.0068					
Sell .88 c	all at <mark>USD 0.</mark>	$0023. \qquad \Rightarrow \text{Initial } c$	cost = USD 0.00 4	15 per collar			
		\Rightarrow Total c	ost: USD 1.35M				
Position Initial CF		Cash flows at t+90					
		S _{t+90} < .84	$.84 < S_{t+90} < .88$	S _{t+90} > .88			
Put	USD 2.04M	(.84 –S _{t+90}) * CAD 300M	0	0			
Call	-USD 0.69M	0	0	(.88 –S _{t+90}) * CAD 300M			
UP	0	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M			
Total CF	USD 1.35M	USD 252M	S _{t+90} CAD 300M	USD 264M			
Net CF a	t t + 90 :						
USD 250.65M fc			for $S_{t+90} < .84$ USD/CAD				
or S _{t+9}	or S_{t+90} CAD 300M – USD 1.35M for .84 USD/CAD < S_{t+90} < .88 USD/CAD						
or USD 262.65M for $S_{t+90} > .88$ USD/CAD				D			
Note: Th	Note: This collar reduces the upside: establishes a floor and a cap.						

Example	Example (continuation):					
6. Altern	6. Alternative: Zero cost insurance:					
At time t,	At time <i>t</i> , <i>buy</i> puts and <i>sell</i> calls with overall (or \approx) matching premium.					
Buy .84 p	ut					
Sell 3 .88	calls . ⇒ Initial cost ≈	0 (actually, a sma	all profit. We'll ignore it).			
Position		Cash flows at t	-90			
	S _{t+90} < .84	$.84 < S_{t+90} < .88$	S _{t+90} > .88			
Put	(.84 – S _{t+90}) * CAD 300M	0	0			
3 Calls	0	0	3 * (.88 – S _{t+90}) * CAD 300M			
UP	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M	S _{t+90} * CAD 300M			
Total CF	USD 252M	S _{t+90} CAD 300M	USD 792M–2*S _{t+90} CAD 300M			
Net CE at	t + 90					
USD 2	252M	for all $S_{t+90} <$.84 USD/CAD			
or S_{t+90}	CAD 300M	for .84 USD/C	$CAD < S_{t+90} < .88 \text{ USD/CAD}$			
or USD 7	or USD 792 M – 2 S_{t+90} CAD 300M for all $S_{t+90} > .88$ USD/CAD					
Note: Whe	<u>Note</u> : When $S_{t+90} > .88$ USD/CAD, this strategy can drive down CFs very quickly!					

1	Managing TE – Hedging with FX Options						
•Review	•Review: Reading Newspaper Quotes						
	PHILAD	EL	PHIA OPT	IONS	5	(PHLX is the exchange)	
	Wednesda	ıy, I	March 21, 2	022		(Trading Date)	
			Calls]	Puts	\Rightarrow (Contracts traded)	
		Vo	ol. Last	Vol.	Last	\Rightarrow (Vol=Volume, Last=Premium)	
Australia	an Dollar				79.92	\Rightarrow (S _t =.7992 USD/AUD)	
10,000 A	ustralian l	Dol	lars-cents p	oer un	it.	\Rightarrow (AUD 10,000 = Size, prices	
78	June	9	3.37	20	1.49	in USD cents)	
79	April	20	1.79	16	0.88		
80	May	15	1.96	8	2.05		
80	June	11	2.29	9	2.52		
82	June	1	1.38	2	3.61		
↑	↑		↑		↑		
X=Strike	T=Maturi	ty	Call Premiu	ım 1	Put Premium	l	
Price							

• Receivables in FC Example : Receivables AUD 20M \Rightarrow Hedge with FX puts OTM: $X_{put-June} = 0.78$ USD/AUD, P = USD .0149 Cost = Total premium = AUD 20M * USD .0149/AUD = USD 298K Floor = 0.78 USD/AUD * AUD 20M =USD 15.6M (Net: USD 15.302M) ITM: $-X_{put-June} = 0.82$ USD/AUD, P = USD .0361 $-X_{put-June} = .80$ USD/AUD, P = USD .0252 (almost ATM) • $X_{put-June} = 0.82$ USD/AUD Cost = Total premium = AUD 20M * USD .0361/AUD = USD 722K Net Floor = 0.82 USD/AUD * AUD 20M - USD 722K = USD 15.678M • $X_{put-June} = 0.80$ USD/AUD (ATM option) Cost = Total premium = USD 504K Net Floor = 0.82 USD/AUD * AUD 20M - USD 504K = USD 15.496M Note: The higher the cost, the higher the floor for the AUD 20M. ¶

Lesson from these examples:

1) Options offer the typical insurance trade-off: Better coverage (lower cap, higher floor) \Rightarrow Higher cost (higher premium)

2) Insurance is expensive. For the $X_{put-June} = 0.80 \text{ USD}/\text{AUD}$ case, it costs USD .504M to insure USD 15.496M (a 3.2% premium).

• We can lower the cost of insurance with a Collar, in this case: buy put & sell call, usually OTM.

Example: Buy $X_{put-June} = 0.78 \text{ USD}/\text{AUD}$ (P = USD .0149) Sell $X_{call-June} = .82 \text{ USD}/\text{AUD}$ (P = USD .0138)

Cost = USD .0149 * 20M – USD .0138 * 20M = USD 22K (very low!) Net Floor = 0.78 USD/AUD * AUD 20M – USD .022M = USD 15.578M Net Cap = 0.82 USD/AUD * AUD 20M – USD .022M = USD 16.378M

A collar is cheaper, but it limits the upside of the option.

• Payables in FC Example: Payable AUD 100M in Mid-June \Rightarrow Hedge with FX calls S_t = .7992 USD/AUD $X_{call-June} = .78$ USD/AUD, P = USD .0337 $X_{put-June} = .78$ USD/AUD, P = USD .0149 $X_{call-June} = .80$ USD/AUD, P = USD .0229 $X_{put-June} = .80$ USD/AUD, P = USD .0252 $X_{call-June} = .82$ USD/AUD, P = USD .0138 $X_{put-June} = .82$ USD/AUD, P = USD .0361 OTM: - $X_{call-June} = 0.82$ USD/AUD - $X_{call-June} = .80$ USD/AUD (\approx ATM) • $X_{call-June} = 0.82$ USD/AUD, Premium = USD .0138 Cost = Total premium = AUD 100M * USD .0138/AUD = USD 1.38M Cap = AUD 100M * 0.82 USD/AUD = USD 82M (Net: USD 83.38M)

• X_{call-June} = **0.80 USD/AUD**, Premium = USD .0229 (almost ATM) Cost = Total premium = **AUD 100M** * USD .0229/AUD = **USD 2.29M** Net Cap = **AUD 100M** * **0.80 USD/AUD** + **USD 2.29M** = **USD 82.29M**

ITM: $X_{call-June} = 0.78 \text{ USD}/\text{AUD}$, Premium = USD .0337 Cost = Total premium = USD 3.37M Net Cap = AUD 100M * 0.78 USD/AUD + USD 3.37M = USD 81.37M

<u>Note</u>: The higher the cost, the lower the cap established for the A**UD 100M** payable.

Again, we can lower the cost of insurance using a Collar, in this case: buy a call & sell a put, usually, both OTM. \P

• Optimal Hedging Strategies?

Q: Which strategy is better? We need to say something about S_{t+90} . For example, we can assume a distribution (normal) or use the ED to say something about future changes in S_t .

Example: Suppose we have a **receivable in SGD** in 30 days. We can use the **distribution** for monthly USD/SGD changes from the past 30 years. Then, we get the distribution for S_{t+30} (USD/SGD).

• Examples assuming an explicit distribution for S_{t+T} **Example – Receivables:** Evaluate (1) FH, (2) MMH, (3) OH & (4) NH. Cud Corp will receive SGD 500,000 in 30 days. (SGD Receivable.) Data: • $S_t = .6500 - .6507 \text{ USD/SGD}.$ • $F_{t,30} = .6510 - .6519 \text{ USD/SGD}.$ • 30-day interest rates: i_{SGD}: 2.65% - 2.75% & i_{USD}: 3.20% - 3.25% • A 30-day put option on SGD: X = .65 USD/SGD and $P_t = \text{USD.01}$. • Forecasted *S*_{*t*+30}: **Possible Outcomes** Probability 18% **USD**.63 24% USD .64 USD .65 34% 21% USD .66 3% USD .68

(1) FH: Sell SGD 30 days forward USD received in 30 days = Receivables in SGD * F_{t,30} = SGD 500,000 * .651 USD/SGD = USD 325,500.
(2) MMH: - Borrow SGD at 2.75% for 30 days, - Convert to USD at .65 USD/SGD, - Deposit USD at 3.2% for 30 days, - Repay SGD loan in 30 days with SGD 500,000 receivable
Amount to borrow = SGD 500,000/(1 + .0275 * 30/360) = = SGD 498,856.79
Convert to USD (Amount to deposit in U.S. bank) = = SGD 498,856.79 * .65 USD/SGD = USD 324,256.91
Amount received in 30 days from U.S. bank deposit = = USD 324,256.91 * (1 + .032 * 30/360) = USD 325,121.60

(3) OH: Purchase put option.		$\mathbf{X} = .6$ $\mathbf{P}_{t} = \mathbf{p}\mathbf{r}$		
Possible S _{t+30}	Premium per SGD + Op Cost	Exercise?	Net USD Received for SGD 0.5M	Prob
.63 USD/SGD	USD .010027	Yes	USD 319,986.5	18%
.64 USD/SGD	USD .010027	Yes	USD 319,986.5	24%
.65 USD/SGD	USD .010027	No	USD 319,986.5	34%
.66 USD/SGD	USD .010027	No	USD 324,986.5	21%
.68 USD/SGD	USD .010027	No	USD 334,986.5	3%
<u>Note</u> : In the T opportunity cost in USD .0 E[Amount Rec	Fotal Amount Recovered in the upfr 1 * .032 * 30/360 \Rightarrow Total Premium eived in USD] = 3	ceived (in U ont paymen = USD .000 Cost: USD 19,986.5 *	USD) we have subtra t of a premium: 0027 (Total = USI 5,013.50 76 + 324,986.50 * .21	Leted the D 13.50) +

Possible S _{t+30}	USD Received for SGD 0.5M	Probability
63 USD/SGD	USD 0.315M	18%
.64 USD/SGD	USD 0.320M	24%
65 USD/SGD	USD 0.325M	34%
66 USD/SGD	USD 0.330M	21%
.68 USD/SGD	USD 0.340M	3%

<u>Note</u>: When we compare (1) to (4), it's not clear which one is better. Preferences will matter. We can calculate and expected value:

E[Amount Received in USD] = 315K * .18 + 320K * .24 + 325K * .34+ + 330K * .21 + 335K * .03 = **USD 323,500**

<u>Conclusion</u>: Cud Corporation is likely to choose the FH. But, risk preferences matter. \P

Example – Payables: Evalua	tte (1) FH, (2) MMH, (3) OH, (4) No Hedge
Situation: Cud Corp needs CH	IF 100,000 in 180 days. (CHF Payable.)
<u>Data</u> :	
• S _t = .675680 USD/CHF	
• $F_{t,180} = .695700 \text{ USD/CI}$	HF.
• 180-day interest rates are as	follows:
i _{CHF} : 9% - 10%;	
i _{usp} : 13% - 14.0%	
• A 180-day call option on CH	IF: $\mathbf{X} = .70 \text{ USD/CHF}$ and $P_t = \text{USD.02}$.
• Cud forecasted S _{t+180} :	
Possible Outcomes	Probability
USD .67	30%
USD .70	50%
USD .75	20%

Example – Payables: Evaluate (1) FH, (2) MMH, (3) OH, (4) No Hedge Situation: Cud Corp needs CHF 100,000 in 180 days. (CHF Payable.) Data: • $S_{t} = .675 - .680 \text{ USD/CHF}.$ • $F_{t,180} = .695 - .700 \text{ USD/CHF}.$ • 180-day interest rates are as follows: i_{CHE}: **9% - 10%;** i_{usp}: **13% - 14.0%** • A 180-day call option on CHF: $\mathbf{X} = .70 \text{ USD/CHF}$ and $P_t = \text{USD.02}$. • Cud forecasted S_{t+180} : **Possible Outcomes** Probability 30% USD .67 **USD**.70 50% USD .75 20%

(1) FH: Purchase CHF 180 days forward
USD needed in 180 days = Payables in CHF x F_{t,180} = CHF 100,000 * .70 USD/CHF = USD 70,000.
(2) MMH:
Borrow USD at 14% for 180 days,
Convert to CHF at .680 USD/CHF ,
Invest CHF at 9% for 180 days,
Repay USD loan in 180 days & transfer CHF deposit to cover payable
Amount in CHF to be invested = CHF 100,000/(1 + .09 * 180/360) = CHF 95,693.78
Amount in USD needed to convert into CHF for deposit = = CHF 95,693.78 * .680 USD/CHF = USD 65,071.77
Interest and principal owed on USD loan after 180 days = = USD 65,071.77 * (1 + .14 * 180/360) = USD 69,626.79

(3) OH: Purchase call option.			$\mathbf{X} = .70 \mathbf{U}$ $C_{t} = premini$	SD/CHF sum = USD .02.	
	Possible S _{t+180}	Premium per CHF + Op Cost	Exercise?	Net Paid for CHF 0.1M	Prob
	.67 USD/SGD	USD .0213	No	USD 69,130	30%
	.70 USD/SGD	USD .0213	No	USD 72,130	50%
	.75 USD/SGD	USD .0213	Yes	USD 72,130	20%

<u>Note</u>: In the Total USD Cost we have included the opportunity cost involved in the upfront payment of a premium = USD 130.

E[Amount to Pay in USD] = USD 71,230

• *Preferences matter*. A risk taker may like the 30% chance of doing better with the OH than with the MMH.

4) Remain Unhedged: Purchase CHF 100,000 in 180 days.			
Possible S _{t+180}	Net Paid for CHF 0.1M	Probability	
.67 USD/SGD	USD 67,000	30%	
.70 USD/SGD	USD 70,000	50%	
.75 USD/SGD	USD 75,000	20%	

Preferences matter: Again, a risk taker may like the **30% chance** of doing better with the NH than with the MMH. (Actually, there is also an additional 50% chance of being very close to the MMH.)

E[Amount to Pay in USD] = USD 70,100

Conclusion: Cud Corporation is likely to choose the MMH. ¶